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Abstract

18015

The incremental shear modulus is calculated for infinitesimal

shear of an incompressible isotropic elastic material in a state

of pure homogeneous deformation.

tions that it be positive are obtained.

Necessary and sufficient condi-

These conditions are

related to the Hadamard conditions for propagation of a wave of

infinitesimal amplitude in the deformed material.
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1. Introduction

In the present paper we calculuate the incremental shear
modulus for infinitesimal simple shear of an incompressible
isotropic elastic material which is initially subjected to a
pure homogeneous deformation, the direction of shear and plane
of shear being arbitrary. (An analogous calculation has been
carried out previously [1] for the case when the plane of shear
is a principal plane for the pure homogeneous deformation.)

Necessary and sufficient conditions are obtained for the
incremental shear modulus to be positive for all directions of
shear perpendicular to a fixed direction, which lies in the
plane of shear and is defined by a unit vector n say. These
are the inequalities (4.8) of the present paper. It is shown
in 85 that they are equivalent to the necessary and sufficient
conditions, previously obtained in [2] and given in (6.5) of
the present paper, that the two sinusoidal waves of infinitesimal
amplitude which can propagate in the deformed elastic material,
in the direction n, have real velocities. The velocities of
propagation of these waves are given (see equation (5.6) below)
by vu/p , where p is the material density and u 1is one or
other of the stationary values of the incremental shear modulus
for shearing in a direction perpendicular to n . It is shown
in §7 that the directions of polarization for the waves are the
directions for which the incremental shear modulus takes its
stationary values.

The necessary and sufficient conditions (6.5) for the wave

velocities to be real, and the equivalent conditions (4.8) for




the incremental shear moduli to be positive, involve the first
and second derivatives of the strain-energy function for the
material with respect to the strain invariants, as well as the
principal extension ratios for the pure homogeneous deformation
and the unit vector n . It is desirable to obtain these condi-
tions in a form which is independent of n . This has been
achieved in [1,3) in the case when n is restricted to lie in

a principal plane of the pure homogeneous deformation. It has
already been shown that the conditions so obtained (the inequali-
ties (6.10) of the present paper) imply the condition (6.5)2.

In the present paper it is shown that a further one of the condi-
tions (condition (6.5)3) is automatically satisfied. It was shown
in a previous paper [4], by numerical example, that the first of

the conditions (6.5) is not implied by the conditions (6.10).




2. Incremental constitutive equation

We consider a deformation of an incompressible isotropic
elastic material in which a particle which is initially at

vector position £ with respect to a fixed origin 0 , say,

moves to vector position x . The components of § and x

~

in a fixed rectangular cartesian system x , with origin at
0 , are €y and x, respectively. The deformation gradient

matrix g is defined by*
T =l - lx, gl (2.1)
The Finger strain g is defined by

C =

-~

g'+ ’ (2.2)

09

where the dagger denotes the transpose. Let W be the strain-
energy per unit volume. Then, since the material is isotropic
and incompressible, W must be expressible as a function of

the invariants T, and T2 of C , defined by

I
T, =trC, T,=3{(trD?-er %} . (2.3)
Thus,
W= W(Tl,fz) . (2.4)
The Cauchy stress matrix o = "613" is then given by
- oW oW L 2
= —_— r — - G- -FG ’ .

Sk [ AR A al’ag] : i

where & is the unit matrix and P is an arbitrary hydrostatic

pressure.

*®
We use the notation = to denote differentiation with respect
b}
to &, and shall assume that the Einstein summation convention
applies to lower case Greek and Latin subscripts.

T




We now consider that the deformation §+x is the resultant
of a finite deformation, in which the particle initially at vector
position § moves to vector position X , followed by an infini-
tesimal deformation in which it moves to vector position X . We

shall accordingly write

and correspondingly

gnges, Iynl vl , Igel *t,,
t2T)
B AR TS S X

where o, I I

- b R L
associated with the deformation &+ X .

C and P are the values of 3, Tl. T2, C and P

With this notation, it follows from (2.5) that

s = 2[(W +I,W,)c - W, (Ce+cC) + 1,W,C

. : E il
* LN TN ) E ¢ (W T W) d, b - (W, #W,01,)C% ] - ps (2.8)

where
2
oW »: IW o W
"1 -a-f » "2 ST ’ wll F' s Wt (2.9)
l B-o 2 B-O l 3-0

It follows from (2.1), (2.2), (2.3), (2.6) and (2.7)2 3.4
with the neglect of terms of higher degree than the first in the

spatial derivatives of u , that

€13 " Xi1,a%,0* X5,0% 0

(2.10)

i, = 2X

1 1,aui,a g ke W L4

2 1

1 C13%51°




The incremental shear modulus

We now consider that the deformation &£+ X is a pure

homogeneous deformation with principal extension ratios Al,

Ao k3 and principal directions parallel to the axes of the

#
rectangular cartesian coordinate system x . Thus ,

(A= 3,2,3) . (3.1)

A ATA

|

| We suppose that a uniform simple shear of amount «x is
superposed on this pure homogeneous deformation, the direction

of shear being parallel to the unit vector g , say, and the

Plane of shear being parallel to the unit vectors £ and n ,

say, where n is perpendicular to f . Then, in (2.6) u is

given by
ue n(§-§)§ . (3.2)

With (3.1), equations (2.1), (2.2) and (2.3) yield

_ i 2 . -2
Cap " M8 » 1) % Ay ot g % S £3.3)
wherse GAB is the Kronecker delta and E denotes summation

over B=1,2,3 . The incompressibility of the material implies

that

X1A2A3 =1 . (3.4)

Introducing (3.1), (3.2) and (3.3)
with f-g- 0 and (3.4),

1.2 into (2.10), we obtain,

3 . 4 ;
We shall assume that the Einstein summation convention is
not applicable to upper case Latin subscripts.




" 2 2
Cap = R(EngAg+ Lgnpry) ;
: 2
i, = 2¢ E AT (3.5)
Lo 2 g K o) -2
. Zx{g A5 § L,n, Ay E RN 2x E T S

From (3.3)l and (3.5)1. we obtain
2 N
(Cpp = MaSap »
3.6)
ki 2 2,,.,2. .2 (
(€C+Cc)pg = x(Lgmy Ay * Lynpdp) (A + Ap)

Introducing (3.3)l o9 (3.5) and (3.6) into (2.8) we obtain

Sap " 2XS;p-Po,p » (3.7)

where

e 2 2
Sap = Wy (£ynpAp+ Lyn,A0)

-2 -2 -2
* Wollungh ¢ 2y Ap” - 26,5 g 2.noAc%}

2 2 2 2
2 ZAAGAB[wll g Loncho* W {(X-2)) g tonghe
-2 2 -2
(2: Lhdg | = o (1,-40) g W g (3.8)

In deriving this result, we use (3.4) and the relations

¥ L2 - ) n? =1, Ln, =0 . (3.9)
AAAA EAA

We note that the plane material surface which is normal to
the unit vector n after the pure homogeneous deformation remains
normal to n after the imposition of the simple shearing deforma-
tion and the area of an element of this surface is unchanged by
this deformation. Accordingly, the change f in the component

of the stress vector acting on this surface in the direction of

the unit vector £ 1is given by




£} 5..80a = 2
ALB AB"A'B ATB

SABLAnB . (3.10)

The incremental shear modulus, u say, for the simple shear

considered is given by

y = £le |, (3.11)
Then, introducing (3.8) into (3.10) and using the relations

(3.9) and (3.5)2, we obtain

1 2 2 -2
TN D W, T
A A
2 S 2 -2

1 g 2["11(‘{ ULV 2"12(§ Natamy) (E Aotany,

o, 2
+w22(£ )] - (3.12)
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4. Conditions for the incremental shear modulus to be positive

In this section we consider that the direction of the unit
vector n is fixed and we derive conditions for the incremental
shear modulus to be positive for all choices of the direction of
shear £ perpendicular to n .

Let a, b be two perpendicular unit vectors in a plane
normal to n . We choose their positive directions so that
a, 9, n forms a right-handed triad. Then,

a*a = beb=nen =1, a-

-~

o

SR sbaco, 2. (4.1)
Since 5 is perpendicular to n , we may express it in the form

£ = acosb+ 9 sin® . (4.2)
Introducing (4.2) into (3.12), we obtain

Ju = P cos 20+Q sin 28+ R , (4.3)
where
P = WP & 2N P, - 4N P+ 2W, P, ,
Q= WoQp ¢ 2N, 00 = WNools* Mgey » it
R = W,R +W,R +2W R, - 4W R

3% IWaoRy

and Pl,Pa, .

S % ) A:\z(‘i' bi) -y IE xia(‘A’ ba) »

-»R, are defined by




10.

Q, = {g AinAaA}{z Aen,b, }

Ry = 3] \Zna )7 s HI Ainby ) s

Py = oI g HE Ana,} - 2] Afmgb, HI A%mm,)
Qg = HI Ainga,HY A0yt HI Mingo, HE 30, )

Ry = HI AdmeayHI Ainaa, ) e 3T AGnyb, HI 27%n,0,)

1 ; (4.5)
Py " I{E A A A} 7{2 AA abab s
U = {E XAZ 'Y A}{z AA LU
Ay o %{E LN } & 7{2 Ay AP A}2 ;
R, = E AgRe .
We can rewrite (4.3) as
2 = (P2+Q®) %sin(204x) + R , (4.6)
where
X = tan L(P/Q) . (4.7)

It is apparent that the necessary and sufficient conditions for

u to be positive for all values of 6 are

R>0 and R? > P2+¢Q? . (4.8)
The stationary values of u occur when
6 = -% (m=1,3,57) . (4.9)

m= 5,7 correspond to reversal of the directions of £ corre-

sponding to m=1,3 respectively, We need therefore consider




FE————

11.

only the cases when m=1,3 . The two corresponding directions
of ¢ are perpendicular. Whem m=<1 , u has a maximum value
and when m=3 , u has a minimum value. From (4.6) it is

evident that these values are given by

u = 2{R: (P2+Q®)%} . (4.10)




5. Propagation of a plane sinusoidal wave

We now suppose that instead of subjecting the pure homoge-
nously deformed material to a static infinitesimal simple shearing
deformation, we propagate, in the direction n , a cosinusoidal
shear wave of infinitesimal amplitude « and angular frequency
w , polarized in the direction £ . We note that for an incom-
Pressible material, the directions of propagation and polarization
are necessarily perpendicular.

With the usual complex notation, the displacement field u

associated with this wave is given by
e K{ exp 1w(Sg-§— ) (5.1)

It is evident from (2.8) and (2.10) that the incremental stress
associated with the deformation (5.1) is obtained from (3.7) by

replacing «k by 1wSk exp ww(Sn-X-t) , -thus

S0 ™ thSngB exp 1w(Sn*X- t) - pé (5.2)

AB AB °*

where s is given by (3.8). We take the incremental hydro-

AB
static pressure p in the form

P =P exp ww(Sn'X-t), (5.3)

where p is independent of X and t .
Bearing in mind the fact that the deformation £+ X is
homogeneous, we obtain the incremental equation of motion as

asAB

= oii, , (5.4)
§ 9% T P

where p 1is the material density.




S

Introducing (5.1), (5.2), (5.3) into (5.4), we obtain

Ny AB —1% n, = ! (5.5)

Multiplying (5.5) throughout by LA and summing over A=1,2,3 ,
we have, with (3.9), (3.10) and (3.11),

s? e o/u , (5.6)

;’ where u 1is given by (3.12).
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AR R A 7 5 o
... - s .

e ahss SR

|
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|

14,
6. Reality of the velocities of propagation of a wave
Equations (5.5), together with the equation
l¢n, =0 (6.1)

A
are equivalent to the equations (3.3) and (2.15) of [2] which

2 It was

were used to calculate the possible values of p/S
found in [2] that there are two such values which are given by
the roots of the quadratic equation
(9_)2 5 3(.2_) sa =0 (6.2)
s® s® o

where

r. 2 2 2.2
a = 4(A{nT+ ...){(xlnlx2K3+ “is)

2. 0.8 .B.%
+ Wl[n2n3(A2 A3) M, + o §

2.2.8.0..8 .8.%
+ 4W2[A2X3n2n3(kz- A3) M, + N

i 16"5"2'@“: : Ag)ao‘g i Ai)z()‘i i )‘g)z(wllw22 . wie) ’
8 = 2{(K 202+ A2nd) s ...] i
+ 102-23%%% L),
and KA, MA (A=1,2,3) are defined by
Ky o= Woe 2w, M= 20 e 2030 e AN,) L (6.4)

In (6.3), the dots indicate terms obtained from those given

by cyclic permutation of the subscripts 1,2,3 on the \'s,
n's, K's and M's.
As was seen in [2], the necessary and sufficient conditions

that the velocities of propagation, parallel to the unit vector




1S.

n , of sinusoidal waves of infinitesimal amplitude, be real are

o630, E*20 . B-tast (6.5)
In [2] the following expression was also given for 82 - 4a :
8- 4a = 4W§{[Ain:(kg- x§)2+ 2
+ 2[x§x§n§n§(xi- A2) (A2 - x§)+ yesdd
+ 8W {[ (13- kg)angnng{Ag(Ai- xg)(n§+ n3)
+ xg(xi- xg)(n§+ n§)}]+ cos)
+ 4{[(A§- A§)2n§n§M1+ )
: lﬁningng(xg' Xg)z(kg' Ai)a(ki' Ag)a(wia' wllw22)} :
(6.6)

By substituting in (6.6) the expression for n given in (4.1)
and the expressions (6.4) for KA and MA , it can be shown,

after lengthy algebraic manipulation, that
82 - 4a = 16(P2+Q?) , (6.7)

where P and Q are defined by (4.4)1 2 with (4.5). Thus,
the relation 82- 4a > 0 in (6.5) is automatically satisfied.

In a similar manner it can be shown that
B = 4R ., (6.8)

The validity of (6.7) and (6.8) can, of course, be verified

pragmatically by choosing arbitrary numerical values for Wl,

W,, W W w and arbitrary values for a,, b A

2* "110 M2 Wop A* Mar M
which satisfy the relations (4.1) and (3.4). Then 82- 4a

and B8 can be calculated by using (6.6) and (6.8) and P2+Q2

‘il-----lIllllllllllll!!!5::::::::::::=IIIIIIF‘ : — 4irr=-‘




‘_ ,. ‘
P

and R can be calculated from (4.4) and (4.5).

From (6.7) and (6.8) it follows that
® w8 48 P
a = 4(R°-P°-Q°) . (6.9)

Equations (6.7), (6.8) and (6.9) imply that the conditions (6.5)
for reality of the wave velocities are precisely the same as the
conditions (4.8) for the incremental shear modulus to be positive.
It was shown in [3] that if we restrict the direction of
propagation of the wave to lie in a principal plane of the under-
lying pure homogeneous deformation, then the necessary and suffi-

Cient conditions that the velocities of propagation be real are

2 2
K, > 0 and (II-AA-X—;)MA+KA >0 (A=1,2,8) .  (6.10)

[t was shown in (1] that these are also the conditions that the
incremental shear modulus be positive if the plane of shear is
a principal plane., It was further shown in [2] that the condi-
tions (6.10) imply that the relation (6.5)2, and hence the
relation (4.8)1, is satisfied for arbitrary choice of the unit
vector n . However, it was shown in [4] that they do not

imply that the relation (6.5)1, and equivalently the relation

(4.8)2, is satisfied for arbitrary n .




iy

7. Directions of polarization of the wave

From (6.2) it follows, with (6.7) and (6.8), that

&> Hee (8%-40)"} = 2{R+ (P2+Q®)¥) (7.1)
for a wave propagating in the direction of n . We see from
(5.6) that p/S2 is the value of the incremental shear modulus
for shear in the direction of polarization of the wave, the
plane of shear being parallel to n.

From (4.10) it is seen that the expressions on the right
hand side of (7.1) are the stationary values of the incremental
shear modulus for specified n . It follows that the directions
of polarization of the sinusoidal waves, which can be propagated
parallel to n , are the directions for which the incremental
shear modulus, for directions of shear perpendicular to n and

*plane of shear parallel to n , has stationary values.
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